Sunday, December 11, 2011

Dealing with very large dataset (continuation)

 Because I have recently updated my operating system (OS), I am wondering how the 64-bit versions of Knime 2.4.2 and RapidMiner 5.1.011 could handle a very large dataset, which cannot be loaded into main memory on a 32-bit OS. This article completes a previous study where we deal with a moderate sized dataset with 500,000 instances and 22 variables. Here, we handle a dataset with 9,634,198 instances and 41 variables. We have already used this dataset in another tutorial. We showed that we cannot perform a decision tree induction on this kind of database without a swapping system, which is implemented into the SIPINA, on a 32-bit OS. We note that Tanagra can handle the dataset, but this is because it encodes the values of the categorical attributes with a byte. The memory occupation remains moderate.

In this tutorial, I analyze the behavior of the 64-bit Knime and RapidMiner on this database. I use 64-bit OS and tools, but I have "only" 4 GB of available memory on my personal computer.

Keywords: very large dataset, decision tree, sampling, sipina, knime, rapidminer
Components: ID3
Tutorial: en_Tanagra_Tree_Very_Large_Dataset.pdf
Tanagra, "Dealing with very large dataset in Sipina".
Tanagra, "Decision tree and large dataset (continuation)".
Tanagra, "Decision tree and large dataset".
Tanagra, "Local sampling for decision tree learning".